Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

N-(4-Nitrophenethyl)formamide

Li-Ping He,^a Xiao-Ming Yang,^b Dao-Lin Pang,^a Hui-Zhang Li^a and Fang Li^a*

^aCollege of Chemistry, Sichuan University, Chengdu 610064, People's Republic of China, and ^bCollege of Pharmaceutical Sciences, Southwest University, Chongging 400715, People's Republic of China Correspondence e-mail: andrea1985@yahoo.cn

Received 2 June 2010; accepted 13 June 2010

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.002 Å; R factor = 0.050; wR factor = 0.157; data-to-parameter ratio = 13.3.

The title compound, $C_9H_{10}N_2O_3$, was synthesized by direct Nformylation of 4-nitrophenethylamine hydrochloride with formic acid and sodium formate in the absence of catalyst and solvent. In the crystal structure, molecules are linked by intermolecular N-H···O hydrogen-bond interactions into chains parallel to the *a* axis.

Related literature

For the applications and synthesis of the title compound, see: Yu et al. (1995); Rahman et al. (2010).

Experimental

Crystal data $C_9H_{10}N_2O_3$ $M_r = 194.19$

Monoclinic, $P2_1/c$ a = 4.4754 (1) Å

b = 17.6664 (5) Å c = 12.1548 (4) Å $\beta = 93.021 \ (2)^{\circ}$ V = 959.67 (5) Å³ Z = 4

Data collection

Bruker SMART CCD area-detector	13857 measured reflections
diffractometer	2218 independent reflections
Absorption correction: multi-scan	1407 reflections with $I > 2\sigma(I)$
(SADABS; Bruker, 2001)	$R_{\rm int} = 0.042$
$T_{\min} = 0.681, \ T_{\max} = 1.000$	

Refinement

 $\begin{array}{l} R[F^2 > 2\sigma(F^2)] = 0.050 \\ wR(F^2) = 0.157 \end{array}$ 167 parameters All H-atom parameters refined S = 1.01 $\Delta \rho_{\rm max} = 0.14 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{\rm min} = -0.18~{\rm e}~{\rm \AA}^{-3}$ 2218 reflections

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N2-H2B\cdots O3^{i}$	0.762 (18)	2.194 (18)	2.8692 (15)	148.1 (16)
Symmetry code: (i)	r ⊥ 1 v z			

Symmetry code: (i) x + 1, y, z.

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

The authors thank Mr Zhi-Yuan Zhou of the Hong Kong Polytechnic University for the X-ray data collection.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RZ2462).

References

Bruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

Rahman, M., Kundu, D., Hajra, A. & Majee, A. (2010). Tetrahedron Lett. 51, 2896-2899

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Yu, W. J., Lu, C. H. & Xiao, Z. F. (1995). Chin. J. Publ. Heal. 3, 131-134.

Mo $K\alpha$ radiation

 $0.42 \times 0.30 \times 0.28 \text{ mm}$

 $\mu = 0.10 \text{ mm}^{-1}$

T = 296 K

supplementary materials

Acta Cryst. (2010). E66, o1721 [doi:10.1107/S1600536810022737]

N-(4-Nitrophenethyl)formamide

L.-P. He, X.-M. Yang, D.-L. Pang, H.-Z. Li and F. Li

Comment

N-(4-Nitrophenethyl)formamide is used as an intermediate material in the synthesis of artificial chlordimeform antigen, which is applied in the immunity analysis of chlordimeform (Yu *et al.*, 1995). We report herein the crystal structure of the title compound.

In the molecule of the title compound (Fig. 1), the ethylformamide group is approximately planar (maximum deviation 0.089 (2) Å for atom C8) and perpendicular to the benzene ring (dihedral angle 89.99 (7) °). The nitro group is substantially coplanar with the benzene ring, forming a dihedral angle of 5.64 (9)°. In the crystal packing, intermolecular O—H···O hydrogen bonds (Table 1) link the molecules into chains parallel to the *a* axis.

Experimental

A mixture of 4-nitrophenethylamine hydrochloride (4.08 g, 0.02mo1), sodium formate (2.08 g, 0.02mo1) and 88% formic acid (20 ml) was heated to reflux and the reaction was monitored by TLC (Rahman *et al.*, 2010.). 50 ml toluene was added and the solution was evaporated under reduced pressure. Dichloromethane was added to dissolve the dry residue and the extract was filtered to remove sodium chloride. The resulting solution was washed with hydrochloric acid followed by water and dried over anhydrous sodium sulfate. The solvent was evaporated under reduced pressure to get the crude product. The crude product was recrystallized with dichloromethane, and a light yellow crystalline powder was obtained. Colourless crystals suitable for X-ray analysis were obtained by slow evaporation of an ethyl acetate solution at room temperature.

Refinement

All H atoms were located in a difference Fourier map and refined isotropically.

Figures

Fig. 1. The molecular structure of the title compound, with displacement ellipsoids drawn at the 30% probability level.

N-(4-Nitrophenethyl)formamide

Crystal data $C_9H_{10}N_2O_3$ $M_r = 194.19$ Monoclinic, $P2_1/c$

F(000) = 408 $D_x = 1.344 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$

supplementary materials

Hall symbol: -P 2ybc a = 4.4754(1) Å b = 17.6664 (5) Åc = 12.1548 (4) Å $\beta = 93.021 \ (2)^{\circ}$ $V = 959.67 (5) \text{ Å}^3$ Z = 4

Date

Data collection	
Bruker SMART CCD area-detector diffractometer	2218 independent reflections
Radiation source: fine-focus sealed tube	1407 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.042$
phi and ω scans	$\theta_{\text{max}} = 27.7^{\circ}, \ \theta_{\text{min}} = 2.0^{\circ}$
Absorption correction: multi-scan (SADABS; Bruker, 2001)	$h = -5 \rightarrow 5$
$T_{\min} = 0.681, T_{\max} = 1.000$	$k = -23 \rightarrow 23$
13857 measured reflections	$l = -14 \rightarrow 15$

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.050$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.157$	All H-atom parameters refined
<i>S</i> = 1.01	$w = 1/[\sigma^2(F_o^2) + (0.0811P)^2 + 0.120P]$ where $P = (F_o^2 + 2F_c^2)/3$
2218 reflections	$(\Delta/\sigma)_{\rm max} = 0.001$
167 parameters	$\Delta \rho_{max} = 0.14 \text{ e} \text{ Å}^{-3}$
0 restraints	$\Delta \rho_{min} = -0.18 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > 2\sigma(F^2)$ is used only for calculating *R*factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Cell parameters from 3623 reflections $\theta = 2.9 - 26.8^{\circ}$ $\mu = 0.10 \text{ mm}^{-1}$ T = 296 KBlock, colourless $0.42 \times 0.30 \times 0.28 \text{ mm}$

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
01	0.5315 (4)	0.72237 (8)	0.42543 (13)	0.1333 (6)
O2	0.4550 (3)	0.60396 (8)	0.40908 (10)	0.1023 (5)
O3	0.9148 (2)	0.59710 (8)	1.14237 (8)	0.0752 (4)
N1	0.5726 (4)	0.65789 (9)	0.45577 (11)	0.0761 (4)
N2	1.3195 (3)	0.60193 (8)	1.04270 (10)	0.0584 (3)
H2B	1.490 (4)	0.6035 (9)	1.0442 (13)	0.070 (5)*
C1	0.7721 (3)	0.64453 (9)	0.55324 (11)	0.0543 (4)
C2	0.8835 (4)	0.70538 (9)	0.61230 (13)	0.0663 (4)
H2A	0.822 (4)	0.7538 (11)	0.5958 (13)	0.081 (5)*
C3	1.0705 (4)	0.69170 (9)	0.70433 (12)	0.0630 (4)
H3A	1.147 (4)	0.7334 (10)	0.7418 (12)	0.073 (5)*
C4	1.1450 (3)	0.61872 (8)	0.73625 (10)	0.0506 (4)
C5	1.0275 (3)	0.55894 (8)	0.67502 (11)	0.0548 (4)
H5A	1.082 (3)	0.5077 (9)	0.6967 (12)	0.071 (5)*
C6	0.8387 (3)	0.57117 (9)	0.58309 (11)	0.0564 (4)
H6A	0.757 (3)	0.5311 (9)	0.5390 (13)	0.067 (4)*
C7	1.3374 (3)	0.60491 (10)	0.84010 (12)	0.0580 (4)
H7B	1.495 (4)	0.6414 (9)	0.8473 (12)	0.072 (5)*
H7A	1.423 (4)	0.5531 (10)	0.8403 (13)	0.076 (5)*
C8	1.1484 (3)	0.61015 (11)	0.93831 (12)	0.0632 (5)
H8B	1.046 (4)	0.6620 (10)	0.9389 (14)	0.088 (5)*
H8A	0.986 (4)	0.5736 (10)	0.9354 (14)	0.080 (5)*
C9	1.1853 (3)	0.59714 (9)	1.13538 (12)	0.0564 (4)
H9A	1.322 (3)	0.5926 (8)	1.1993 (13)	0.058 (4)*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.1864 (15)	0.0955 (10)	0.1094 (10)	0.0058 (11)	-0.0736 (10)	0.0306 (8)
02	0.1260 (11)	0.1099 (10)	0.0660 (7)	-0.0225 (8)	-0.0411 (7)	0.0019 (7)
03	0.0479 (6)	0.1188 (9)	0.0581 (6)	0.0041 (6)	-0.0059 (5)	0.0155 (6)
N1	0.0876 (10)	0.0875 (10)	0.0510(7)	-0.0011 (9)	-0.0159 (7)	0.0113 (7)
N2	0.0391 (6)	0.0883 (9)	0.0464 (6)	0.0004 (6)	-0.0107 (5)	0.0035 (6)
C1	0.0570 (8)	0.0655 (9)	0.0397 (6)	-0.0022 (7)	-0.0033 (6)	0.0050 (6)
C2	0.0838 (11)	0.0552 (9)	0.0585 (9)	-0.0023 (8)	-0.0116 (8)	0.0093 (7)
C3	0.0735 (10)	0.0592 (9)	0.0548 (8)	-0.0111 (8)	-0.0107 (7)	-0.0028 (7)
C4	0.0462 (7)	0.0644 (9)	0.0412 (6)	0.0000 (6)	0.0013 (5)	0.0016 (6)
C5	0.0587 (8)	0.0552 (8)	0.0502 (7)	0.0058 (7)	0.0001 (6)	0.0028 (6)
C6	0.0620 (9)	0.0601 (9)	0.0463 (7)	-0.0029 (7)	-0.0025 (6)	-0.0040 (6)
C7	0.0467 (8)	0.0772 (10)	0.0490 (8)	0.0034 (8)	-0.0064 (6)	0.0016 (7)
C8	0.0449 (8)	0.0979 (12)	0.0456 (7)	0.0021 (8)	-0.0109 (6)	0.0008 (8)
C9	0.0497 (8)	0.0704 (9)	0.0474 (7)	0.0032 (7)	-0.0149 (6)	0.0069(7)

Geometric parameters (Å, °)

01—N1	1.208 (2)	С3—НЗА		0.922 (17)
O2—N1	1.2147 (19)	C4—C5		1.380 (2)
O3—C9	1.2182 (18)	C4—C7		1.5099 (19)
N1—C1	1.4647 (18)	C5—C6		1.382 (2)
N2—C9	1.3070 (19)	C5—H5A		0.971 (16)
N2—C8	1.4542 (18)	С6—Н6А		0.950 (16)
N2—H2B	0.762 (18)	С7—С8		1.502 (2)
C1—C2	1.372 (2)	С7—Н7В		0.957 (17)
C1—C6	1.374 (2)	C7—H7A		0.993 (17)
C2—C3	1.382 (2)	C8—H8B		1.025 (18)
C2—H2A	0.917 (18)	C8—H8A		0.971 (18)
C3—C4	1.382 (2)	С9—Н9А		0.967 (15)
O1—N1—O2	122.79 (15)	С6—С5—Н5А		120.0 (9)
O1—N1—C1	118.37 (15)	C1—C6—C5		118.40 (14)
O2—N1—C1	118.83 (14)	С1—С6—Н6А		118.9 (9)
C9—N2—C8	120.92 (13)	С5—С6—Н6А		122.7 (9)
C9—N2—H2B	119.1 (13)	C8—C7—C4		109.53 (12)
C8—N2—H2B	119.8 (13)	С8—С7—Н7В		109.3 (10)
C2—C1—C6	122.21 (13)	С4—С7—Н7В		110.7 (10)
C2C1N1	119.10 (14)	С8—С7—Н7А		106.8 (9)
C6—C1—N1	118.69 (13)	С4—С7—Н7А		110.7 (9)
C1—C2—C3	118.31 (14)	Н7В—С7—Н7А		109.7 (14)
C1—C2—H2A	121.4 (11)	N2—C8—C7		113.25 (12)
С3—С2—Н2А	120.0 (10)	N2—C8—H8B		107.4 (10)
C4—C3—C2	121.13 (14)	С7—С8—Н8В		109.4 (10)
С4—С3—НЗА	121.9 (10)	N2—C8—H8A		108.9 (10)
С2—С3—НЗА	116.9 (10)	С7—С8—Н8А		112.4 (10)
C5—C4—C3	118.88 (13)	H8B—C8—H8A		105.1 (15)
C5—C4—C7	120.77 (13)	O3—C9—N2		124.31 (13)
C3—C4—C7	120.26 (13)	О3—С9—Н9А		122.2 (9)
C4—C5—C6	121.06 (14)	N2—C9—H9A		113.5 (9)
C4—C5—H5A	118.9 (9)			
O1—N1—C1—C2	5.8 (2)	С7—С4—С5—С6		176.62 (13)
O2—N1—C1—C2	-173.98 (16)	C2-C1-C6-C5		-0.8 (2)
O1—N1—C1—C6	-174.89 (17)	N1-C1-C6-C5		179.90 (13)
O2—N1—C1—C6	5.3 (2)	C4—C5—C6—C1		0.5 (2)
C6—C1—C2—C3	0.5 (3)	С5—С4—С7—С8		-96.40 (17)
N1—C1—C2—C3	179.72 (14)	C3—C4—C7—C8		80.06 (18)
C1—C2—C3—C4	0.2 (3)	C9—N2—C8—C7		-172.75 (15)
C2—C3—C4—C5	-0.5 (2)	C4—C7—C8—N2		-176.62 (13)
C2—C3—C4—C7	-177.03 (15)	C8—N2—C9—O3		2.0 (2)
C3—C4—C5—C6	0.1 (2)			
Hydrogen-bond geometry (Å, °)				
D—H····A	<i>D</i> —Н	H···A	$D \cdots A$	D—H··· A

N2—H2B···O3 ⁱ	0.762 (18)	2.194 (18)	2.8692 (15)	148.1 (16)
Symmetry codes: (i) $x+1$, y , z .				

Fig. 1

